Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 677
Filtrar
1.
J Mol Biol ; 436(2): 168368, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-37977298

RESUMO

The cytoplasmic membrane compartmentalises the bacterial cell into cytoplasm and periplasm. Proteins located in this membrane have a defined topology that is established during their biogenesis. However, the accuracy of this fundamental biosynthetic process is unknown. We developed compartment-specific fluorescence labelling methods with up to single-molecule sensitivity. Application of these methods to the single and multi-spanning membrane proteins of the Tat protein transport system revealed rare topogenesis errors. This methodology also detected low level soluble protein mislocalization from the cytoplasm to the periplasm. This study shows that it is possible to uncover rare errors in protein localization by leveraging the high sensitivity of fluorescence methods.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Proteínas de Membrana Transportadoras , Imagem Individual de Molécula , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/análise , Fluorescência , Proteínas de Membrana Transportadoras/análise , Proteínas de Membrana Transportadoras/metabolismo , Periplasma/química , Transporte Proteico , Imagem Individual de Molécula/métodos
2.
Nucleic Acids Res ; 51(9): 4572-4587, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36987847

RESUMO

RNA-binding proteins (RPBs) are deeply involved in fundamental cellular processes in bacteria and are vital for their survival. Despite this, few studies have so far been dedicated to direct and global identification of bacterial RBPs. We have adapted the RNA interactome capture (RIC) technique, originally developed for eukaryotic systems, to globally identify RBPs in bacteria. RIC takes advantage of the base pairing potential of poly(A) tails to pull-down RNA-protein complexes. Overexpressing poly(A) polymerase I in Escherichia coli drastically increased transcriptome-wide RNA polyadenylation, enabling pull-down of crosslinked RNA-protein complexes using immobilized oligo(dT) as bait. With this approach, we identified 169 putative RBPs, roughly half of which are already annotated as RNA-binding. We experimentally verified the RNA-binding ability of a number of uncharacterized RBPs, including YhgF, which is exceptionally well conserved not only in bacteria, but also in archaea and eukaryotes. We identified YhgF RNA targets in vivo using CLIP-seq, verified specific binding in vitro, and reveal a putative role for YhgF in regulation of gene expression. Our findings present a simple and robust strategy for RBP identification in bacteria, provide a resource of new bacterial RBPs, and lay the foundation for further studies of the highly conserved RBP YhgF.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , RNA Bacteriano , Proteínas de Ligação a RNA , Sequenciamento de Cromatina por Imunoprecipitação , Escherichia coli/genética , Escherichia coli/metabolismo , Eucariotos , Proteínas de Ligação a RNA/análise , Proteínas de Ligação a RNA/metabolismo , Transcriptoma , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Proteínas de Escherichia coli/análise , Proteínas de Escherichia coli/metabolismo , Polinucleotídeo Adenililtransferase/metabolismo , Poliadenilação , Ligação Proteica
3.
Emerg Top Life Sci ; 7(1): 137-150, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36960750

RESUMO

The complex two-membrane organization of the envelope of Gram-negative bacteria imposes an unique biosynthetic and topological constraints that can affect translocation of lipids and proteins synthesized on the cytoplasm facing leaflet of the cytoplasmic (inner) membrane (IM), across the IM and between the IM and outer membrane (OM). Balanced growth of two membranes and continuous loss of phospholipids in the periplasmic leaflet of the IM as metabolic precursors for envelope components and for translocation to the OM requires a constant supply of phospholipids in the IM cytosolic leaflet. At present we have no explanation as to why the biogenic E. coli IM displays asymmetry. Lipid asymmetry is largely related to highly entropically disfavored, unequal headgroup and acyl group asymmetries which are usually actively maintained by active mechanisms. However, these mechanisms are largely unknown for bacteria. Alternatively, lipid asymmetry in biogenic IM could be metabolically controlled in order to maintain uniform bilayer growth and asymmetric transmembrane arrangement by balancing temporally the net rates of synthesis and flip-flop, inter IM and OM bidirectional flows and bilayer chemical and physical properties as spontaneous response. Does such flippase-less or 'lipid only", 'passive' mechanism of generation and maintenance of lipid asymmetry exists in the IM? The driving force for IM asymmetry can arise from the packing requirements imposed upon the bilayer system during cell division through disproportional distribution of two negatively curved phospholipids, phosphatidylethanolamine and cardiolipin, with consistent reciprocal tendency to increase and decrease lipid order in each membrane leaflet respectively.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/química , Escherichia coli/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Fosfolipídeos/análise , Fosfolipídeos/metabolismo , Bactérias Gram-Negativas/metabolismo , Proteínas de Escherichia coli/análise , Proteínas de Escherichia coli/metabolismo
4.
Methods Mol Biol ; 2531: 107-124, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35941482

RESUMO

Capillary zone electrophoresis (CZE) is a fundamentally simple and highly efficient separation technique based on differences in electrophoretic mobilities of analytes. CZE-mass spectrometry (MS) has become an important analytical tool in top-down proteomics which aims to delineate proteoforms in cells comprehensively, because of the improvement of capillary coatings, sample stacking methods, and CE-MS interfaces. Here, we present a CZE-MS/MS-based top-down proteomics procedure for the characterization of a standard protein mixture and an Escherichia coli (E. coli) cell lysate using linear polyacrylamide-coated capillaries, a dynamic pH junction sample stacking method, a commercialized electro-kinetically pumped sheath flow CE-MS interface and an Orbitrap mass spectrometer. CZE-MS/MS can identify hundreds of proteoforms routinely from the E. coli sample with a 1% proteoform-level false discovery rate (FDR).


Assuntos
Proteínas de Escherichia coli , Proteômica , Eletroforese Capilar/métodos , Escherichia coli/química , Proteínas de Escherichia coli/análise , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos
5.
BMC Microbiol ; 22(1): 135, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585491

RESUMO

BACKGROUND: Bacterial identification at the strain level is a much-needed, but arduous and challenging task. This study aimed to develop a method for identifying and differentiating individual strains among multiple strains of the same bacterial species. The set used for testing the method consisted of 17 Escherichia coli strains picked from a collection of strains isolated in Germany, Spain, the United Kingdom and Vietnam from humans, cattle, swine, wild boars, and chickens. We targeted unique or rare ORFan genes to address the problem of selective and specific strain identification. These ORFan genes, exclusive to each strain, served as templates for developing strain-specific primers. RESULTS: Most of the experimental strains (14 out of 17) possessed unique ORFan genes that were used to develop strain-specific primers. The remaining three strains were identified by combining a PCR for a rare gene with a selection step for isolating the experimental strains. Multiplex PCR allowed the successful identification of the strains both in vitro in spiked faecal material in addition to in vivo after experimental infections of pigs and recovery of bacteria from faecal material. In addition, primers for qPCR were also developed and quantitative readout from faecal samples after experimental infection was also possible. CONCLUSIONS: The method described in this manuscript using strain-specific unique genes to identify single strains in a mixture of strains proved itself efficient and reliable in detecting and following individual strains both in vitro and in vivo, representing a fast and inexpensive alternative to more costly methods.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Animais , Bovinos , Galinhas , Primers do DNA/genética , Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Proteínas de Escherichia coli/análise , Proteínas de Escherichia coli/genética , Fezes/microbiologia , Reação em Cadeia da Polimerase Multiplex/métodos , Suínos
6.
Bioorg Chem ; 119: 105532, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34883361

RESUMO

Microbial polysaccharides composed of N-acetylglucosamine (GlcNAc), such as chitin, peptidoglycan and poly-ß-(1 â†’ 6)-GlcNAc (dPNAG), play a critical role in maintaining cell integrity or in facilitating biofilm formation in numerous fungal and bacterial pathogens. Glycosyl hydrolase enzymes that catalyze the degradation of these ß-GlcNAc containing polysaccharides play important roles in normal microbial cell physiology and can also be exploited as biocatalysts with applications as anti-fungal, anti-bacterial, or biofilm dispersal agents. Assays to rapidly detect and characterize the activity of such glycosyl hydrolase enzymes can facilitate their development as biocatalyst, however, currently available probes such as 4-methylumbelliferyl-ß-GlcNAc (4MU-GlcNAc) are not universally accepted as substrates, and their fluorescent signal is sensitive to changes in pH. Here, we present the development of a new multifunctional fluorescent substrate analog for the detection and characterization of hexosaminidase enzyme activity containing a 7-amino-4-methyl coumarin (AMC) carbamate aglycone. This probe is widely tolerated as a substrate for exo-acting ß-hexosaminidase, family 19 endo-chitinase, and the dPNAG hydrolase enzyme Dispersin B (DspB) and enables detection of hexosaminidase enzyme activity via either single wavelength fluorescent measurements or ratiometric fluorescent detection. We demonstrate the utility of this probe to screen for recombinant DspB activity in Escherichia coli cell lysates, and for the development of a high-throughput assay to screen for DspB inhibitors.


Assuntos
Cumarínicos/química , Corantes Fluorescentes/química , Hexosaminidases/análise , Cumarínicos/síntese química , Relação Dose-Resposta a Droga , Escherichia coli/enzimologia , Proteínas de Escherichia coli/análise , Proteínas de Escherichia coli/metabolismo , Corantes Fluorescentes/síntese química , Hexosaminidases/metabolismo , Ensaios de Triagem em Larga Escala , Estrutura Molecular , Relação Estrutura-Atividade
7.
Int J Antimicrob Agents ; 59(1): 106480, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34801675

RESUMO

BACKGROUND: The plasmid-mediated bacterial colistin-resistant gene, mcr, is of global concern in clinical healthcare. However, there are few reports of surveillance for mcr in Japan. The aim of this study was to assess the prevalence of colistin resistance by identifying nine mcr genes in extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae and carbapenem-resistant Enterobacteriaceae (CRE) isolates in Japan. METHODS: A total of 273 ESBL and CRE clinical isolates were collected from patients in five tertiary hospitals from August 2016 to March 2017. Minimum inhibitory concentration (MIC) of colistin was measured using the microdilution method. Polymerase chain reaction (PCR) was performed to detect mcr-1 to mcr-9 genes in all strains. Whole-genome sequencing (WGS) analysis was conducted for any mcr-genes identified that had not been previously reported in patients from Japan. RESULTS: The rate of colistin resistance was 7.7% in all strains, with a higher rate in the CRE strains than in the ESBL-producing strains (20.4% versus 1.1%). The mcr-5 and mcr-9 gene were detected in one ESBL-producing Escherichia coli strain (1/273, 0.37%) and three CRE strains (3/273, 1.1%), respectively. As the ESBL-producing E. coli strain was the first clinical strain with mcr-5 in Japan, WGS analysis was performed for the strain. The sequence type of the mcr-5-positive strain was ST1642 and it carried two distinct plasmids, ESBL gene-carrying pN-ES-6-1, and mcr-5.1-carrying pN-ES-6-2. CONCLUSIONS: The results of this study showed that the frequency of colistin resistance and mcr-positive strains is not high in Japan. As the MIC for colistin was low in the mcr-5.1 and mcr-9 gene-positive strain, continuous monitoring of mcr genes is necessary.


Assuntos
Carbapenêmicos/análise , Colistina/análise , Farmacorresistência Bacteriana Múltipla/genética , Enterobacteriaceae/genética , Proteínas de Escherichia coli/genética , beta-Lactamases/genética , Proteínas de Escherichia coli/análise , Variação Genética , Genótipo , Humanos , Japão , Vigilância da População , beta-Lactamases/análise
8.
Mikrochim Acta ; 189(1): 4, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34855041

RESUMO

Synthetic biology approaches for rewiring of bacterial constructs to express particular intracellular factors upon induction with the target analyte are emerging as sensing paradigms for applications in environmental and in vivo monitoring. To aid in the design and optimization of bacterial constructs for sensing analytes, there is a need for lysis-free intracellular detection modalities that monitor the signal level and kinetics of expressed factors within different modified bacteria in a multiplexed manner, without requiring cumbersome surface immobilization. Herein, an electrochemical detection system on nanoporous gold that is electrofabricated with a biomaterial redox capacitor is presented for quantifying ß-galactosidase expressed inside modified Escherichia coli constructs upon induction with dopamine. This nanostructure-mediated redox amplification approach on a microfluidic platform allows for multiplexed assessment of the expressed intracellular factors from different bacterial constructs suspended in distinct microchannels, with no need for cell lysis or immobilization. Since redox mediators present over the entire depth of the microchannel can interact with the electrode and with the E. coli construct in each channel, the platform exhibits high sensitivity and enables multiplexing. We envision its application in assessing synthetic biology-based approaches for comparing specificity, sensitivity, and signal response time upon induction with target analytes of interest.


Assuntos
Catecóis/química , Quitosana/química , Técnicas Eletroquímicas/métodos , Proteínas de Escherichia coli/análise , Nanoporos , beta-Galactosidase/análise , Dopamina/farmacologia , Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , Galactosídeos/química , Galactosídeos/metabolismo , Ouro/química , Limite de Detecção , Técnicas Analíticas Microfluídicas , Oxirredução , Rutênio/química , Transativadores/metabolismo , beta-Galactosidase/metabolismo
9.
Front Immunol ; 12: 748497, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745120

RESUMO

Background: Impaired intestinal barrier integrity plays a crucial role in the development of many diseases such as obesity, inflammatory bowel disease, and type 2 diabetes. Thus, protecting the intestinal barrier from pathological disruption is of great significance. Tryptophan can increase gut barrier integrity, enhance intestinal absorption, and decrease intestinal inflammation. However, the mechanism of tryptophan in decreasing intestinal barrier damage and inflammatory response remains largely unknown. The objective of this study was to test the hypothesis that tryptophan can enhance intestinal epithelial barrier integrity and decrease inflammatory response mediated by the calcium-sensing receptor (CaSR)/Ras-related C3 botulinum toxin substrate 1 (Rac1)/phospholipase Cγ1 (PLC-γ1) signaling pathway. Methods: IPEC-J2 cells were treated with or without enterotoxigenic Escherichia coli (ETEC) K88 in the absence or presence of tryptophan, CaSR inhibitor (NPS-2143), wild-type CaSR overexpression (pcDNA3.1-CaSR-WT), Rac1-siRNA, and PLC-γ1-siRNA. Results: The results showed that ETEC K88 decreased the protein concentration of occludin, zonula occludens-1 (ZO-1), claudin-1, CaSR, total Rac1, Rho family member 1 of porcine GTP-binding protein (GTP-rac1), phosphorylated phospholipase Cγ1 (p-PLC-γ1), and inositol triphosphate (IP3); suppressed the transepithelial electrical resistance (TEER); and enhanced the permeability of FITC-dextran compared with the control group. Compared with the control group, 0.7 mM tryptophan increased the protein concentration of CaSR, total Rac1, GTP-rac1, p-PLC-γ1, ZO-1, claudin-1, occludin, and IP3; elevated the TEER; and decreased the permeability of FITC-dextran and contents of interleukin-8 (IL-8) and TNF-α. However, 0.7 mM tryptophan+ETEC K88 reversed the effects induced by 0.7 mM tryptophan alone. Rac1-siRNA+tryptophan+ETEC K88 or PLC-γ1-siRNA+tryptophan+ETEC K88 reduced the TEER, increased the permeability of FITC-dextran, and improved the contents of IL-8 and TNF-α compared with tryptophan+ETEC K88. NPS2143+tryptophan+ETEC K88 decreased the TEER and the protein concentration of CaSR, total Rac1, GTP-rac1, p-PLC-γ1, ZO-1, claudin-1, occludin, and IP3; increased the permeability of FITC-dextran; and improved the contents of IL-8 and TNF-α compared with tryptophan+ETEC K88. pcDNA3.1-CaSR-WT+Rac1-siRNA+ETEC K88 and pcDNA3.1-CaSR-WT+PLC-γ1-siRNA+ETEC K88 decreased the TEER and enhanced the permeability in porcine intestine epithelial cells compared with pcDNA3.1-CaSR-WT+ETEC K88. Conclusion: Tryptophan can improve intestinal epithelial barrier integrity and decrease inflammatory response through the CaSR/Rac1/PLC-γ1 signaling pathway.


Assuntos
Escherichia coli Enterotoxigênica/imunologia , Células Epiteliais/efeitos dos fármacos , Mucosa Intestinal/citologia , Fosfolipase C gama/fisiologia , Receptores de Detecção de Cálcio/fisiologia , Transdução de Sinais/fisiologia , Triptofano/farmacologia , Proteínas rac1 de Ligação ao GTP/fisiologia , Animais , Antígenos de Bactérias/análise , Linhagem Celular , Escherichia coli Enterotoxigênica/química , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Proteínas de Escherichia coli/análise , Proteínas de Fímbrias/análise , Inflamação , Naftalenos/farmacologia , Interferência de RNA , RNA Interferente Pequeno/genética , Suínos
10.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34740970

RESUMO

Cotranscriptional RNA folding is crucial for the timely control of biological processes, but because of its transient nature, its study has remained challenging. While single-molecule Förster resonance energy transfer (smFRET) is unique to investigate transient RNA structures, its application to cotranscriptional studies has been limited to nonnative systems lacking RNA polymerase (RNAP)-dependent features, which are crucial for gene regulation. Here, we present an approach that enables site-specific labeling and smFRET studies of kilobase-length transcripts within native bacterial complexes. By monitoring Escherichia coli nascent riboswitches, we reveal an inverse relationship between elongation speed and metabolite-sensing efficiency and show that pause sites upstream of the translation start codon delimit a sequence hotspot for metabolite sensing during transcription. Furthermore, we demonstrate a crucial role of the bacterial RNAP actively delaying the formation, within the hotspot sequence, of competing structures precluding metabolite binding. Our approach allows the investigation of cotranscriptional regulatory mechanisms in bacterial and eukaryotic elongation complexes.


Assuntos
Proteínas de Escherichia coli/metabolismo , Riboswitch/fisiologia , Imagem Individual de Molécula/métodos , Elongação da Transcrição Genética , Carbocianinas , Escherichia coli , Proteínas de Escherichia coli/análise , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes
11.
PLoS One ; 16(11): e0260650, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34843608

RESUMO

Fourteen proteins produced by three pathogenic Escherichia coli strains were identified using antibiotic induction, MALDI-TOF-TOF tandem mass spectrometry (MS/MS) and top-down proteomic analysis using software developed in-house. Host proteins as well as plasmid proteins were identified. Mature, intact protein ions were fragmented by post-source decay (PSD), and prominent fragment ions resulted from the aspartic acid effect fragmentation mechanism wherein polypeptide backbone cleavage (PBC) occurs on the C-terminal side of aspartic acid (D), glutamic acid (E) and asparagine (N) residues. These highly specific MS/MS-PSD fragment ions were compared to b- and y-type fragment ions on the C-terminal side of D-, E- and N-residues of in silico protein sequences derived from whole genome sequencing. Nine proteins were found to be post-translationally modified with either removal of an N-terminal methionine or a signal peptide. The protein sequence truncation algorithm of our software correctly identified all full and truncated protein sequences. Truncated sequences were compared to those predicted by SignalP. Nearly complete concurrence was obtained except for one protein where SignalP mis-identified the cleavage site by one residue. Two proteins had intramolecular disulfide bonds that were inferred by the absence of PBC on the C-terminal side of a D-residue located within the disulfide loop. These results demonstrate the utility of MALDI-TOF-TOF for identification of full and truncated bacterial proteins.


Assuntos
Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/análise , Escherichia coli/química , Plasmídeos/química , Humanos , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
12.
Nat Commun ; 12(1): 3178, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34039963

RESUMO

Living systems formed and evolved under constraints that govern their interactions with the inorganic world. These interactions are definable using basic physico-chemical principles. Here, we formulate a comprehensive set of ten governing abiotic constraints that define possible quantitative metabolomes. We apply these constraints to a metabolic network of Escherichia coli that represents 90% of its metabolome. We show that the quantitative metabolomes allowed by the abiotic constraints are consistent with metabolomic and isotope-labeling data. We find that: (i) abiotic constraints drive the evolution of high-affinity phosphate transporters; (ii) Charge-, hydrogen- and magnesium-related constraints underlie transcriptional regulatory responses to osmotic stress; and (iii) hydrogen-ion and charge imbalance underlie transcriptional regulatory responses to acid stress. Thus, quantifying the constraints that the inorganic world imposes on living systems provides insights into their key characteristics, helps understand the outcomes of evolutionary adaptation, and should be considered as a fundamental part of theoretical biology and for understanding the constraints on evolution.


Assuntos
Adaptação Fisiológica , Escherichia coli/fisiologia , Metaboloma/fisiologia , Estresse Fisiológico , Ácidos/metabolismo , Evolução Biológica , Escherichia coli/química , Proteínas de Escherichia coli/análise , Proteínas de Escherichia coli/metabolismo , Regulação da Expressão Gênica/fisiologia , Hidrogênio/metabolismo , Magnésio/metabolismo , Redes e Vias Metabólicas/fisiologia , Metabolômica , Osmose , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo
13.
Biomed Chromatogr ; 35(10): e5180, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34043824

RESUMO

Globally, simvastatin is one of the most commonly used statin drugs. Its antimicrobial properties have been investigated against various pathogens. However, its effect on biological processes in bacteria has been unclear. This study focused on altered biological and metabolic processes at protein and metabolite levels induced by simvastatin. MS-based proteomics and metabolomics were used to investigate the altered proteins and metabolites between experimental groups. Proteomics results showed that simvastatin induced various antimicrobial targets such as chaperon protein DnaK and cell division protein FtsZ. Metabolomics results revealed phenotypic changes in cells under simvastatin stress. Integrated proteomics and metabolomics result indicated that various metabolic processes were altered to adapt to stress conditions. Energy metabolism (glycolysis, tricarboxylic acid cycle, etc.), amino acid synthesis and ribosomal proteins, and purine and pyrimidine synthesis were induced by the effect of simvastatin. This study will contribute to the understanding of antimicrobial properties of statin drugs.


Assuntos
Antibacterianos/farmacologia , Escherichia coli , Metaboloma/efeitos dos fármacos , Proteoma/efeitos dos fármacos , Sinvastatina/farmacologia , Cromatografia Líquida de Alta Pressão , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/análise , Proteínas de Escherichia coli/metabolismo , Metabolômica , Proteoma/análise , Proteômica , Espectrometria de Massas em Tandem
14.
Protein Sci ; 30(8): 1628-1639, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33955095

RESUMO

Alkaline phosphatase (ALP), a homo-dimeric enzyme has been widely used in various bioassays as disease markers and enzyme probes. Recent advancements of digital bioassay revolutionized ALP-based diagnostic assays as seen in rapid growth of digital ELISA and the emerging multiplex profiling of single-molecule ALP isomers. However, the intrinsic heterogeneity found among ALP molecules hampers the ALP-based quantitative digital bioassays. This study aims quantitative analysis of single-molecule activities of ALP from Escherichia coli and reveals the static heterogeneity in catalytic activity of ALP with two distinct populations: half-active and fully-active portions. Digital assays with serial buffer exchange uncovered single-molecule Michaelis-Menten kinetics of ALP; half-active molecules have halved values of the catalytic turnover rate, kcat , and the rate constant of productive binding, kon , of the fully active molecules. These findings suggest that half-active ALP molecules are heterogenic dimers composed of inactive and active monomer units, while fully active ALP molecules comprise two active units. Static heterogeneity was also observed for ALP with other origins: calf intestine or shrimp, showing how the findings can be generalized across species. Cell-free expression of ALP with disulfide bond enhancer and spiked zinc ion resulted in homogenous population of ALP of full activity, implying that inactive monomer units of ALP are deficient in correct disulfide bond formation and zinc ion coordination. These findings provide basis for further study on molecular mechanism and biogenesis of ALP, and also offer the way to prepare homogenous and active populations of ALP for highly quantitative and sensitive bioassays with ALP.


Assuntos
Fosfatase Alcalina , Bioensaio/métodos , Sistema Livre de Células/enzimologia , Imagem Individual de Molécula/métodos , Fosfatase Alcalina/análise , Fosfatase Alcalina/química , Fosfatase Alcalina/metabolismo , Proteínas de Escherichia coli/análise , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Microscopia de Fluorescência
15.
J Am Soc Mass Spectrom ; 32(6): 1336-1344, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-33725447

RESUMO

Labeling approaches using isobaric chemical tags (e.g., isobaric tagging for relative and absolute quantification, iTRAQ and tandem mass tag, TMT) have been widely applied for the quantification of peptides and proteins in bottom-up MS. However, until recently, successful applications of these approaches to top-down proteomics have been limited because proteins tend to precipitate and "crash" out of solution during TMT labeling of complex samples making the quantification of such samples difficult. In this study, we report a top-down TMT MS platform for confidently identifying and quantifying low molecular weight intact proteoforms in complex biological samples. To reduce the sample complexity and remove large proteins from complex samples, we developed a filter-SEC technique that combines a molecular weight cutoff filtration step with high-performance size exclusion chromatography (SEC) separation. No protein precipitation was observed in filtered samples under the intact protein-level TMT labeling conditions. The proposed top-down TMT MS platform enables high-throughput analysis of intact proteoforms, allowing for the identification and quantification of hundreds of intact proteoforms from Escherichia coli cell lysates. To our knowledge, this represents the first high-throughput TMT labeling-based, quantitative, top-down MS analysis suitable for complex biological samples.


Assuntos
Proteínas de Escherichia coli/análise , Proteínas de Escherichia coli/química , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Cromatografia em Gel , Cromatografia Líquida/métodos , Peso Molecular , Proteínas Periplásmicas/análise , Proteínas Periplásmicas/química , Peroxidases/análise , Peroxidases/química , Proteínas Ribossômicas/análise , Proteínas Ribossômicas/química
16.
ACS Appl Mater Interfaces ; 13(10): 11571-11578, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33661597

RESUMO

The membrane proteins of microbes are at the forefront of host and parasite interactions. Having a general view of the functions of microbial membrane proteins is vital for many biomedical studies on microbiota. Nevertheless, due to the strong hydrophobicity and low concentration of membrane proteins, it is hard to efficiently enrich and digest the proteins for mass spectrometry analysis. Herein, we design an enzymatic nanoreactor for the digestion of membrane proteins using methylated well-ordered hexagonal mesoporous silica (Met-SBA-15). The material can efficiently extract hydrophobic membrane proteins and host the proteolysis in nanopores. The performance of the enzymatic nanoreactor is first demonstrated using standard hydrophobic proteins and then validated using membrane proteins extracted from Escherichia coli (E. coli) or a mixed bacterial sample of eight strains. Using the nanoreactor, 431 membrane proteins are identified from E. coli, accounting for 38.5% of all membrane proteins of the species, which is much more than that by the widely used in-solution digestion protocol. From the mixed bacterial sample of eight strains, 1395 membrane proteins are identified using the nanoreactor. On the contrary, the traditional in-solution proteolysis workflow only leads to the identification of 477 membrane proteins, demonstrating that the Met-SBA-15 can be offered as an excellent tool for microbial membrane proteome research and is expected to be used in human microbiota studies, e.g. host-microbe interactions.


Assuntos
Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Proteínas de Escherichia coli/isolamento & purificação , Escherichia coli/química , Proteômica/métodos , Dióxido de Silício/química , Adsorção , Proteínas da Membrana Bacteriana Externa/análise , Proteínas de Escherichia coli/análise , Porosidade
17.
Sci Rep ; 11(1): 1760, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33469060

RESUMO

The presence of missing values (MVs) in label-free quantitative proteomics greatly reduces the completeness of data. Imputation has been widely utilized to handle MVs, and selection of the proper method is critical for the accuracy and reliability of imputation. Here we present a comparative study that evaluates the performance of seven popular imputation methods with a large-scale benchmark dataset and an immune cell dataset. Simulated MVs were incorporated into the complete part of each dataset with different combinations of MV rates and missing not at random (MNAR) rates. Normalized root mean square error (NRMSE) was applied to evaluate the accuracy of protein abundances and intergroup protein ratios after imputation. Detection of true positives (TPs) and false altered-protein discovery rate (FADR) between groups were also compared using the benchmark dataset. Furthermore, the accuracy of handling real MVs was assessed by comparing enriched pathways and signature genes of cell activation after imputing the immune cell dataset. We observed that the accuracy of imputation is primarily affected by the MNAR rate rather than the MV rate, and downstream analysis can be largely impacted by the selection of imputation methods. A random forest-based imputation method consistently outperformed other popular methods by achieving the lowest NRMSE, high amount of TPs with the average FADR < 5%, and the best detection of relevant pathways and signature genes, highlighting it as the most suitable method for label-free proteomics.


Assuntos
Proteínas de Escherichia coli/análise , Proteínas de Neoplasias/análise , Proteoma/análise , Proteômica/métodos , Proteínas de Saccharomyces cerevisiae/análise , Algoritmos , Análise de Dados , Conjuntos de Dados como Assunto , Processamento Eletrônico de Dados , Escherichia coli/metabolismo , Humanos , Saccharomyces cerevisiae/metabolismo
18.
Biosensors (Basel) ; 11(1)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477907

RESUMO

There is a growing demand for rapid and sensitive detection approaches for pathogenic bacteria that can be applied by non-specialists in non-laboratory field settings. Here, the detection of the typical E. coli enzyme ß-glucuronidase using a chitosan-based sensing hydrogel-coated paper sensor and the detailed analysis of the reaction kinetics, as detected by a smartphone camera, is reported. The chromogenic reporter unit affords an intense blue color in a two-step reaction, which was analyzed using a modified Michaelis-Menten approach. This generalizable approach can be used to determine the limit of detection and comprises an invaluable tool to characterize the performance of lab-in-a-phone type approaches. For the particular system analyzed, the ratio of reaction rate and equilibrium constants of the enzyme-substrate complex are 0.3 and 0.9 pM-1h-1 for ß-glucuronidase in phosphate buffered saline and lysogeny broth, respectively. The minimal degree of substrate conversion for detection of the indigo pigment formed during the reaction is 0.15, while the minimal time required for detection in this particular system is ~2 h at an enzyme concentration of 100 nM. Therefore, this approach is applicable for quantitative lab-in-a-phone based point of care detection systems that are based on enzymatic substrate conversion via bacterial enzymes.


Assuntos
Técnicas Biossensoriais/instrumentação , Quitosana/química , Escherichia coli/isolamento & purificação , Glucuronidase/análise , Escherichia coli/enzimologia , Proteínas de Escherichia coli/análise , Hidrogéis/química , Cinética , Lisogenia , Fosfatos/química , Sistemas Automatizados de Assistência Junto ao Leito , Smartphone , Gravação em Vídeo
19.
Methods Mol Biol ; 2261: 73-78, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33420985

RESUMO

We describe a standard protocol for phosphate-affinity fluorescent gel staining that uses a fluorophore-labeled dizinc(II) complex of a derivative of the phosphate-binding tag molecule Phos-tag to detect His- and Asp-phosphorylated proteins separated by SDS-PAGE. The procedure permits the quantitative monitoring of phosphorylated histidine kinases (His-phosphoproteins) and their cognate phosphorylated response regulators (Asp-phosphoproteins) in bacterial two-component signaling transduction systems. The total time required for each gel staining operation is about 2 h at room temperature.


Assuntos
Proteínas da Membrana Bacteriana Externa/análise , Proteínas de Bactérias/análise , Eletroforese em Gel de Poliacrilamida , Proteínas de Escherichia coli/análise , Escherichia coli/metabolismo , Complexos Multienzimáticos/análise , Fosfoproteínas/análise , Proteômica , Piridinas/química , Transativadores/análise , Ácido Aspártico , Corantes Fluorescentes , Histidina , Fosforilação
20.
Sci Rep ; 11(1): 1569, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452354

RESUMO

Antibiotics are failing fast, and the development pipeline remains alarmingly dry. New drug research and development is being urged by world health officials, with new antibacterials against multidrug-resistant Gram-negative pathogens as the highest priority. Antivirulence drugs, which inhibit bacterial pathogenicity factors, are a class of promising antibacterials, however, their development is stifled by lack of standardised preclinical testing akin to what guides antibiotic development. The lack of established target-specific microbiological assays amenable to high-throughput, often means that cell-based testing of virulence inhibitors is absent from the discovery (hit-to-lead) phase, only to be employed at later-stages of lead optimization. Here, we address this by establishing a pipeline of bacterial cell-based assays developed for the identification and early preclinical evaluation of DsbA inhibitors, previously identified by biophysical and biochemical assays. Inhibitors of DsbA block oxidative protein folding required for virulence factor folding in pathogens. Here we use existing Escherichia coli DsbA inhibitors and uropathogenic E. coli (UPEC) as a model pathogen, to demonstrate that the combination of a cell-based sulfotransferase assay and a motility assay (both DsbA reporter assays), modified for a higher throughput format, can provide a robust and target-specific platform for the identification and evaluation of DsbA inhibitors.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Isomerases de Dissulfetos de Proteínas/análise , Antibacterianos/farmacologia , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X/métodos , Proteínas de Escherichia coli/análise , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Humanos , Isomerases de Dissulfetos de Proteínas/química , Dobramento de Proteína/efeitos dos fármacos , Virulência/efeitos dos fármacos , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...